Stochastic variational learning in recurrent spiking networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic variational learning in recurrent spiking networks

The ability to learn and perform statistical inference with biologically plausible recurrent networks of spiking neurons is an important step toward understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generati...

متن کامل

Variational Learning for Recurrent Spiking Networks

We derive a plausible learning rule for feedforward, feedback and lateral connections in a recurrent network of spiking neurons. Operating in the context of a generative model for distributions of spike sequences, the learning mechanism is derived from variational inference principles. The synaptic plasticity rules found are interesting in that they are strongly reminiscent of experimental Spik...

متن کامل

Learning recurrent dynamics in spiking networks

Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifying the recurrent connectivity with a recursive least squares algorithm provides sufficient flexibi...

متن کامل

Learning Stochastic Recurrent Networks

Leveraging advances in variational inference, we propose to enhance recurrent neural networks with latent variables, resulting in Stochastic Recurrent Networks (STORNs). The model i) can be trained with stochastic gradient methods, ii) allows structured and multi-modal conditionals at each time step, iii) features a reliable estimator of the marginal likelihood and iv) is a generalisation of de...

متن کامل

Enforcing balance allows local supervised learning in spiking recurrent networks

To predict sensory inputs or control motor trajectories, the brain must constantly learn temporal dynamics based on error feedback. However, it remains unclear how such supervised learning is implemented in biological neural networks. Learning in recurrent spiking networks is notoriously difficult because local changes in connectivity may have an unpredictable effect on the global dynamics. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Computational Neuroscience

سال: 2014

ISSN: 1662-5188

DOI: 10.3389/fncom.2014.00038